Scoring and Lessons Learned with the CSAR Benchmark Using an Improved Iterative Knowledge-Based Scoring Function
نویسندگان
چکیده
Based on a statistical mechanics-based iterative method, we have extracted a set of distance-dependent, all-atom pairwise potentials for protein-ligand interactions from the crystal structures of 1300 protein-ligand complexes. The iterative method circumvents the long-standing reference state problem in knowledge-based scoring functions. The resulted scoring function, referred to as ITScore 2.0, has been tested with the CSAR (Community Structure-Activity Resource, 2009 release) benchmark of 345 diverse protein-ligand complexes. ITScore 2.0 achieved a Pearson correlation of R(2) = 0.54 in binding affinity prediction. A comparative analysis has been done on the scoring performances of ITScore 2.0, the van der Waals (VDW) scoring function, the VDW with heavy atoms only, and the force field (FF) scoring function of DOCK which consists of a VDW term and an electrostatic term. The results reveal several important factors that affect the scoring performances, which could be helpful for the improvement of scoring functions.
منابع مشابه
Automated Large-Scale File Preparation, Docking, and Scoring: Evaluation of ITScore and STScore Using the 2012 Community Structure-Activity Resource Benchmark
In this study, we use the recently released 2012 Community Structure-Activity Resource (CSAR) data set to evaluate two knowledge-based scoring functions, ITScore and STScore, and a simple force-field-based potential (VDWScore). The CSAR data set contains 757 compounds, most with known affinities, and 57 crystal structures. With the help of the script files for docking preparation, we use the fu...
متن کاملCombining SFCscore with Random Forests leads to improved affinity prediction for protein-ligand complexes
SFCscore is a collection of emprirical scoring functions derived from a set of over 60 descriptors for protein-ligand complexes of known structure [1]. By the time of their derivation, SFCscore functions were the best-performing scoring functions tested on large heterogeneous data sets, but the overall correlation was still not within the desired range. Similarly, despite the ever increasing am...
متن کاملCombined Application of Cheminformatics- and Physical Force Field-Based Scoring Functions Improves Binding Affinity Prediction for CSAR Data Sets
The curated CSAR-NRC benchmark sets provide valuable opportunity for testing or comparing the performance of both existing and novel scoring functions. We apply two different scoring functions, both independently and in combination, to predict the binding affinity of ligands in the CSAR-NRC data sets. One reported here for the first time employs multiple chemical-geometrical descriptors of the ...
متن کاملDocking and Scoring with Target-Specific Pose Classifier Succeeds in Native-Like Pose Identification But Not Binding Affinity Prediction in the CSAR 2014 Benchmark Exercise
The CSAR 2014 exercise provided an important benchmark for testing current approaches for pose identification and ligand ranking using three X-ray characterized proteins: Factor Xa (FXa), Spleen Tyrosine Kinase (SYK), and tRNA Methyltransferase (TRMD). In Phase 1 of the exercise, we employed Glide and MedusaDock docking software, both individually and in combination, with the special target-spe...
متن کاملInclusion of Solvation and Entropy in the Knowledge-Based Scoring Function for Protein-Ligand Interactions
The effects of solvation and entropy play a critical role in determining the binding free energy in protein-ligand interactions. Despite the good balance between speed and accuracy, no current knowledge-based scoring functions account for the effects of solvation and configurational entropy explicitly due to the difficulty in deriving the corresponding pair potentials and the resulting double c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and modeling
دوره 51 9 شماره
صفحات -
تاریخ انتشار 2011